The consequences for human welfare involved in questions like these are simply staggering: once one starts to think about them, it is hard to think about anything else

In the same vein, the effects of the digital revolution on employment, productivity, inequality and welfare could be so stunning that, once we start to think about them, it is hard to think about anything else
Economic progress and social welfare depend on technical progress in the long run. Technological and digital transformation represents an opportunity in the history of mankind, but also enormous challenges.

The digital revolution is having disruptive effects on employment, occupations, required skills, the wage premium, inequality and polarization, although so far there are no grounds to claim that it affects unemployment at aggregate level.

It is crucial for societies (public sector, firms and workers) to anticipate and manage actively the digital revolution, using a broad array of policies that

- ensure equal opportunities,
- enhance the long-term positive effects of an inclusive technical and digital progress to bring this age of new opportunities to everyone, and
- reduce transition costs in the short and medium term.
Contents

01 Introduction

02 Overview and historical evidence of the effects of technical progress

03 The effects of the digital revolution
Will this time be different?

04 Policies for the digital revolution

05 Conclusions
Introduction
Introduction: The conventional wisdom

- Long-run progress and welfare in societies are determined by technological change, which boosts productivity, wages and income per capita.

- Over the last two centuries, technological change has allowed for increasing employment without raising unemployment rates.

- On an individual basis, workers with complementary skills to new technologies have traditionally benefited from better employment opportunities and higher wages (greater productivity and division of labor, Adam Smith).

- On the contrary, workers with skills that are partial or perfect substitutes for automation have experienced wage losses and even unemployment during the transition to new occupations.
Introduction: Is the digital revolution different?

- Is the current technological and digital transformation different from previous industrial revolutions?
- To what extent will the automation of routine and non-routine tasks materialize?
- How will the impact of technologies such as computerization, robotisation, big data and artificial intelligence differ from that of previous technologies?
- We can attempt to forecast some trends by analyzing the immediate impact and scope of emerging technologies.
- Growing interest academia, think tanks, international institutions and many other: a new line of research at BBVA Research.
Overview and historical evidence of the effects of technical progress
Overview: The pessimistic vision of a world without labour

- Luddites, who destroyed industrial looms between 1811 and 1816, and the Swing Riots of 1830, where threshing machines were destroyed

- Marx (1867): machines replace workers, whose value falls. This contradiction will mark the end of capitalism

- Frey and Osborne (2013): 47% of employment in the US is under threat from computers

- Brynjolsson and McAfee (2014): Digital innovations are contributing to the stagnation of average incomes in the United States and the disappearance of many middle-level jobs

- Piketty (2014): Capital (in the hands of only a few) grows more than GDP and exacerbates inequality

- Benzell et al (2015): A long-term decrease in labor's share in the redistribution of income from losers to winners. Smart machines can mean long-term misery for all

- De Stefano (2016): risks for workers from new forms of work

- Milanovic (2016): Technological progress, sectoral reallocation of labor, globalization and current policy are generating a second Kuznets curve that will not disappear any time soon

- Avent (2016): New technologies will create new and good jobs, but they will not be enough to absorb the over-abundance of workers
Overview: A more optimistic vision of technical progress

- Technical progress has been a constant feature in history. At the height of the Luddite movement, A. Lovelace, the creator of the first programming algorithm, was born in 1815.

- Progress in some sectors increases income growth, which raises the demand for production in other sectors, and prompts the appearance of new goods and services, which in turn increases employment.

- *Mokyr (2014)*: The future holds occupations that will seem as strange to us as many of those today seem to our grandparents. Our lack of imagination is largely responsible for much of today’s pessimism.

- *Arntz et al (2016)*: When one considers the various different tasks in each occupation, only 9% of employment is capable of being automated on average in 21 OECD countries, which is far below the number estimated by Frey and Osborne (2013).

- *Gregory et al (2016)*: Technical change that substitutes routine work has positive net effects on overall employment in a sample of 27 countries between 1999 and 2010, as the externalities predominate which compensate the substitution of certain jobs by capital.

- *Conseil d’Orientation pour l’Emploi (2017)*: Estimates do not take account of the fact that current jobs will change or of direct and indirect job creation deriving from technological change.

- The “gig economy” can improve employment match-ups and labour market efficiency.
Today’s unemployment in the US and the UK are at rates similar to those at the start of the 20th century

GDP per capita in the United States, United Kingdom and Spain 1900-2018 (1900 = 100)

Unemployment rate in the US, Spain and the United Kingdom, 1900-2018

Source: Andrés and Doménech (2019) based on The Maddison Project (2018) and OCDE. Data in logarithm form

For over a century, technical progress has not destroyed jobs in aggregate terms, despite population growth and the increase of women labor participation rates
A negative correlation in the OECD between productivity growth and changes in the unemployment rate

Productivity growth and unemployment changes, OECD, 1960-2018

In the last six decades there has been a negative correlation in the OECD between productivity growth, due to innovation, and changes in the unemployment rate.

Nevertheless there are differences across countries and other factors explain these differences and the negative relationship between both variable (correlation is not causation).

Change in the unemployment rate, 2018-1960

Annual rate of growth of GDP per hour worked

Source: Andrés and Doménech (2019) based on OECD.
A continuous process of creative destruction, new occupations, and sectoral reallocation

Sectoral distribution of full-time equivalent employment, Spain, 1900-2015

Employment in services and per capita income in OECD countries, 1840-2000

Sectoral development due to technical progress, increasing globalization and changes in consumer preferences (Baumol, 1967)
Thanks to technical progress, working hours have voluntarily fallen over time, contradicting Keynes.

Keynes (1930) predicted that in the long run the working week would be 15 hours to keep employment stable, which has not been the case so far.
Technical progress in health has increased life expectancy

Since 1960 life expectancy has increased by 1.9 years per decade.

Life expectancy at age 65 years is increasing more than one year per decade.

The increase in life expectancy is one of the determinants of the great improvement in well-being.

A challenge for the pension system. Retirement age (65 years) has remained virtually unchanged since 1916.

Life expectancy at birth, 1900-2011

Source: Own work based on www.clio-below.eu
EU5: Denmark, Finland, Germany, the Netherlands and Sweden
Inequality: shifting trends in the last century

Income share of the top 1%, 1900-2012

- Inequality increased at the end of the 19th century
- The Great Levelling 1920-1970
- Inequality (personal and functional) has increased since 1980, mainly in major Anglo-saxon countries …
 … affected by the interaction between technical progress, demography, educational policies, globalization, competition in product and labor markets, and the response of the welfare state

Source: Own work based on www.wid.world
EU5: Denmark, Finland, Germany, the Netherlands and Sweden
The effects of the digital revolution
Will this time be different?
Is automation destroying employment?
An open debate

Correlation between exposure to robots and employment for metropolitan areas of the US

The race against the machine

Acemoglu y Restrepo (2017):
- One additional robot (autonomous machines with multiple reprogrammable applications) per thousand employees reduces the employment rate by 0.18 - 0.34pp and wages by 0.25 - 0.5pp
- Greater effect among more exposed industries, manual occupations and workers without a university education

Graetz y Michaels (2016):
- In 14 industries in 17 countries (1993-2007), robots boost productivity and wages, and reduce prices but not aggregate employment, although they do that among the least skilled

Source: Acemoglu y Restrepo (2017)
Is automation destroying employment? An open debate

Digital intensity and unemployment in 40 countries, 2016-2017

The race against the machine

- There is a negative correlation between the digital and robotics intensity and unemployment is observed.

- The digital revolution is fostering new activities, while boosting demand for less innovative sectors.

Skill biased technological change

Relative supply of human capital and relative salary in 18 OECD countries, 2000-16

The race against the machine

- Goldin and Katz (2008) and Acemoglu and Autor (2011). Despite the increase of workers with higher education, their relative wage has risen compared to those with lower educational levels.

- Technical progress is complementary to skilled workers, increasing their demand faster than their supply.

Technical progress biased against routine work

- Autor, Katz y Kearney (2006) find that automation and computerization complement workers who perform non-routine and abstract tasks, substitute those who carry out routine work, and do not affect those who undertake manual and non-routine activities.

- Polarization has also occurred in Europe in the last two decades.

Source: BBVA research based on Aum et al (2018), and Díaz, Doménech and Neut (2018)
Job polarization

Change in employment between 1993 and 2010 in 16 European countries

![Graph showing change in employment between 1993 and 2010 in 16 European countries.](image)

- **Four occupations with lower salaries**
- **Eight occupations with lower salaries**
- **Nine occupations with lower salaries**

Technical progress biased against routine work

- **Autor, Katz y Kearney (2006)** find that automation and computerization complement workers who perform non-routine and abstract tasks, substitute those who carry out routine work, and do not affect those who undertake manual and non-routine activities.

- Polarization has also occurred in Europe in the last two decades.

Source: Andrés and Doménech (2018) based on data from Goos, Manning and Salomons (2014)
Skill biased technological change and job polarization are having heterogeneous effects across countries.

An efficient and fair transition

- There are **big disparities among advanced economies** as regards to per capita income, unemployment and inequality.
- The challenge is **to manage the technological and digital transformation** by spurring growth while reducing both inequality and the unemployment rate.
- Certain countries, such as **Spain**, are far from the frontier, allowing for higher-growth policy strategies that do not raise unemployment and inequality.

Source: BBVA Research based on the OECD and Eurostat. The size of each circle is in proportion to unemployment.
The future of employment

- It is much easier to estimate which jobs are going to be affected than to guess which ones are going to be created.

- **The Baumol effect**: Richer societies demand more labour-intensive services, increasing wages: health and personal care (ageing), education, leisure and tourism activities, personal services, ...

- The challenge is a fair transition from jobs destroyed to jobs created: **Protecting people rather than jobs** (Tirole, 2017)
Workers affected by the digital revolution

Percentage of workers in occupations with high risk of automation in the U.S. and Spain*

- According to Frey and Osborne (2017), 47% of jobs in the U.S. face a high risk of automation.
- With the same methodology, in Spain the percentage is 36%.
- When you take into account the various tasks of each occupation the risk is around 10%.

Workers affected by the digital revolution

Characteristics of workers in jobs most at risk of being automated in Spain*

- Low level of education
- Women
- Young people
- Seeking a new job
- Do not undertake non-formal education
- Without positions of responsibility
- Not telecommuting
- Private sector
- Have come out of unemployment
- With temporary contract
- In small firms
- In the sector:
 - Primary
 - Manufacturing
 - Trade
 - Hotels, restaurants and cafés
 - Finance
 - Property

The probability of automation of individuals is determined by variables that differentiate between each employee with regard to personal characteristics, as well as employment and the firm.

Technological transformation is both an opportunity and a challenge.

Although the aggregate impact is positive, it may have very different effects for different groups of workers.

It is essential to lead the change with policies that smooth the transition, cushion the costs and boost the benefits.

Source: Domenech, García, Neut and Montañez (2018)
Policies for the digital revolution
Policies for managing technological change: Education

01
Investing in human capital is crucial to achieving skills complementary to technical progress, even for less-skilled tasks.

02
Raising the quality of jobs in the services sector and improving society’s views towards many of them.

03
Improving professional (e.g. languages), social, managerial and personal skills which are required to meet society’s growing needs.

04
Continuous training and flexibility to change occupations over working life. New tasks for public employment services and in collective bargaining.

05
Adapt the educational system and training to new demands taking into account skill biased technological progress.

06
The educational system must evolve in step with society, fomenting creativity, boosting non-cognitive skills and improving social intelligence.
Policies for managing technological change: Education

Skill-biased technical progress and new jobs that might be hard to imagine at the present time not only require more but, above all, better and more flexible training.

The dual distribution of educational levels in Spain means that approximately one third of the younger population may lack the skills needed for the digital transformation.

Labor market policies

01
Removing barriers to job creation, investment and firm growth:
finance, start-ups, taxes, red tape, regulations in product markets, quality of institutions, etc,

02
Better labor market regulations, and active and passive policies:
A more efficient and equitable

03
Improving the matching process between vacancies and the unemployed using **big data + AI**.
Additional information to improve skills

04
A better **tax structure** that allows for redistribution without harming employment or investment in new technologies

05
Adapt labor regulations to the **gig economy** and the needs of independent workers and new employers in the labor market
Policies for inclusive growth and redistribution

01. **Education** and employment policies are necessary conditions, but may be not enough.

02. Greater welfare for all in the long run, but substantial **transition costs** for many workers in the medium term.

03. First, ensure **equality of opportunities** and later insure individuals against adverse situations (ex-post redistribution).

04. **Efficiency of public policies**: ensure inclusive growth at the lowest possible cost in terms of employment and investment in innovation.

05. The challenge is to **distribute wealth and not to curb its creation**, with taxes on automation (what is a robot?), artificial intelligence or big data.

06. The welfare state still has a lot of scope for improvement in boosting employment, income and equality before proposing a **basic universal income**.
Multiple transitions: Winners or losers?

High productivity and high unemployment (Inequality with redistribution)

Low productivity and high unemployment (Inequality with low redistribution)

High productivity and low unemployment (A new Great Levelling)

Low productivity and low unemployment (Ageing problem)

Countries can end up in very different equilibria, depending on how they manage the digital revolution. Better policies will allow more successful outcomes.

A new international division of labor and wealth (strategic map)
Conclusions
Key messages

- Economic progress and social welfare depend on technical progress in the long run. Technological and digital transformation represents an opportunity in the history of mankind, but also enormous challenges.

- The digital revolution is having disruptive effects on employment, occupations, required skills, the wage premium, inequality and polarization, although so far there are no grounds to claim that it affects unemployment at aggregate level.

- It is crucial for societies (public sector, firms and workers) to anticipate and manage actively the digital revolution, using a broad array of policies that:
 - ensure equal opportunities,
 - enhance the long-term positive effects of an inclusive technical and digital progress to bring this age of new opportunities to everyone, and
 - reduce transition costs in the short and medium term.
The Age of Digital Disruption: the Future of Employment

III Jornadas de Postgrado en Iberoamérica "El Futuro del Empleo"
Sevilla, January 24, 2019